#include #include #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define input(directions,pin) (directions &= (~pin)) // set port direction for input #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 102 // bit delay for 9600 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define char_delay() _delay_ms(10) // char delay #define bridge_port PORTA // H-bridge port #define bridge_direction DDRA // H-bridge direction #define Ab (1 << PA0) // H-bridge output pins #define Aa (1 << PA1) // " #define Bb (1 << PA3) // " #define Ba (1 << PA4) // " #define on_delay() _delay_us(40) // PWM on time #define off_delay() _delay_us(5) // PWM off time #define PWM_count 200 // number of PWM cycles #define step_count 200 // number of steps #define serialOUT_port PORTA #define serialOUT_direction DDRA #define serialOUT_pins PINA //#define serial_pin_in (1 << PA0) #define serialOUT_pin_out (1 << PA7) #define serialIN_port PORTB #define serialIN_direction DDRB #define serialIN_pins PINB #define serialIN_pin_in (1 << PB2) #define close_id '2' #define low_avg_id '3' #define high_avg_id '4' #define open_id '5' static uint8_t count; static uint8_t i,j,t,q; // // A+ B+ PWM pulse // void pulse_ApBp() { clear(bridge_port, Ab); clear(bridge_port, Bb); set(bridge_port, Aa); set(bridge_port, Ba); for (count = 0; count < PWM_count; ++count) { set(bridge_port, Aa); set(bridge_port, Ba); on_delay(); clear(bridge_port, Aa); clear(bridge_port, Ba); off_delay(); } } // // A+ B- PWM pulse // void pulse_ApBm() { clear(bridge_port, Ab); clear(bridge_port, Ba); set(bridge_port, Aa); set(bridge_port, Bb); for (count = 0; count < PWM_count; ++count) { set(bridge_port, Aa); set(bridge_port, Bb); on_delay(); clear(bridge_port, Aa); clear(bridge_port, Bb); off_delay(); } } // // A- B+ PWM pulse // void pulse_AmBp() { clear(bridge_port, Aa); clear(bridge_port, Bb); set(bridge_port, Ab); set(bridge_port, Ba); for (count = 0; count < PWM_count; ++count) { set(bridge_port, Ab); set(bridge_port, Ba); on_delay(); clear(bridge_port, Ab); clear(bridge_port, Ba); off_delay(); } } // // A- B- PWM pulse // void pulse_AmBm() { clear(bridge_port, Aa); clear(bridge_port, Ba); set(bridge_port, Ab); set(bridge_port, Bb); for (count = 0; count < PWM_count; ++count) { set(bridge_port, Ab); set(bridge_port, Bb); on_delay(); clear(bridge_port, Ab); clear(bridge_port, Bb); off_delay(); } } // // clockwise step // void step_cw() { pulse_ApBp(); pulse_AmBp(); pulse_AmBm(); pulse_ApBm(); } // // counter-clockwise step // void step_ccw() { pulse_ApBm(); pulse_AmBm(); pulse_AmBp(); pulse_ApBp(); } void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) { // // read character into rxbyte on pins pin // assumes line driver (inverts bits) // *rxbyte = 0; while (pin_test(*pins,pin)) // // wait for start bit // ; // // delay to middle of first data bit // half_bit_delay(); bit_delay(); // // unrolled loop to read data bits // if pin_test(*pins,pin) *rxbyte |= (1 << 0); else *rxbyte |= (0 << 0); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 1); else *rxbyte |= (0 << 1); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 2); else *rxbyte |= (0 << 2); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 3); else *rxbyte |= (0 << 3); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 4); else *rxbyte |= (0 << 4); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 5); else *rxbyte |= (0 << 5); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 6); else *rxbyte |= (0 << 6); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 7); else *rxbyte |= (0 << 7); // // wait for stop bit // bit_delay(); half_bit_delay(); } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } void put_string(volatile unsigned char *port, unsigned char pin, PGM_P str) { // // send character in txchar on port pin // assumes line driver (inverts bits) // static char chr; static int index; index = 0; do { chr = pgm_read_byte(&(str[index])); put_char(&serialOUT_port, serialOUT_pin_out, chr); ++index; } while (chr != 0); } // // void stepper (){ clear(bridge_port, Aa); output(bridge_direction, Aa); clear(bridge_port, Ab); output(bridge_direction, Ab); clear(bridge_port, Ba); output(bridge_direction, Ba); clear(bridge_port, Bb); output(bridge_direction, Bb); if (j<>i){ t= (j-i); for (q= 0; q < t; ++q){ step_ccw(); }} else if (j==i){ for (q=0; q<0 ; ++q){ step_cw();}} /*for (j = 0; j < 75; ++j){ step_cw(); } for (i = 0; i < 75; ++i){ step_ccw(); }*/ } int main(void) { // // main // static char chr; // // set clock divider to /1 // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize bridge pins // // // // initialize output pins // set(serialOUT_port, serialOUT_pin_out); input(serialOUT_direction, serialOUT_pin_out); // // main loop // j=0; while (1) { get_char(&serialIN_pins, serialIN_pin_in, &chr); if (chr == open_id) { clear(bridge_port, Aa); output(bridge_direction, Aa); clear(bridge_port, Ab); output(bridge_direction, Ab); clear(bridge_port, Ba); output(bridge_direction, Ba); clear(bridge_port, Bb); output(bridge_direction, Bb); if (j<75){ t= (75-j); for (q= 0; q < t; ++q){ step_cw(); }} else if (j>75){ t= (j-75); for (q= 0; q < t; ++q){ step_ccw(); }} j=75; output(serialOUT_direction, serialOUT_pin_out); static const char message[] PROGMEM = "Opened"; put_string(&serialOUT_port, serialOUT_pin_out, (PGM_P) message); put_char(&serialOUT_port, serialOUT_pin_out, 4); put_char(&serialOUT_port, serialOUT_pin_out, 10); // new line input(serialOUT_direction, serialOUT_pin_out); } else if (chr == close_id) { clear(bridge_port, Aa); output(bridge_direction, Aa); clear(bridge_port, Ab); output(bridge_direction, Ab); clear(bridge_port, Ba); output(bridge_direction, Ba); clear(bridge_port, Bb); output(bridge_direction, Bb); if (j<0){ t= (0-j); for (q= 0; q < t; ++q){ step_cw(); }} else if (j>0){ t= (j); for (q= 0; q < t; ++q){ step_ccw(); }} j=0; output(serialOUT_direction, serialOUT_pin_out); static const char message[] PROGMEM = "Opened"; put_string(&serialOUT_port, serialOUT_pin_out, (PGM_P) message); put_char(&serialOUT_port, serialOUT_pin_out, 1); put_char(&serialOUT_port, serialOUT_pin_out, 10); // new line input(serialOUT_direction, serialOUT_pin_out); } else if (chr == low_avg_id) { i=25; clear(bridge_port, Aa); output(bridge_direction, Aa); clear(bridge_port, Ab); output(bridge_direction, Ab); clear(bridge_port, Ba); output(bridge_direction, Ba); clear(bridge_port, Bb); output(bridge_direction, Bb); if (j<25){ t= (25-j); for (q= 0; q < t; ++q){ step_cw(); }} else if (j>25){ t= (j-25); for (q= 0; q < t; ++q){ step_ccw(); }} j=25; output(serialOUT_direction, serialOUT_pin_out); static const char message[] PROGMEM = "Opened"; put_string(&serialOUT_port, serialOUT_pin_out, (PGM_P) message); put_char(&serialOUT_port, serialOUT_pin_out, '2'); put_char(&serialOUT_port, serialOUT_pin_out, 10); // new line input(serialOUT_direction, serialOUT_pin_out); } else if (chr == high_avg_id) { i=50; clear(bridge_port, Aa); output(bridge_direction, Aa); clear(bridge_port, Ab); output(bridge_direction, Ab); clear(bridge_port, Ba); output(bridge_direction, Ba); clear(bridge_port, Bb); output(bridge_direction, Bb); if (ji){ t= (j-i); for (q= 0; q < t; ++q){ step_ccw(); }} j=50; output(serialOUT_direction, serialOUT_pin_out); static const char message[] PROGMEM = "Opened"; put_string(&serialOUT_port, serialOUT_pin_out, (PGM_P) message); put_char(&serialOUT_port, serialOUT_pin_out, '3'); put_char(&serialOUT_port, serialOUT_pin_out, 10); // new line input(serialOUT_direction, serialOUT_pin_out); } } }