
Circuit intégré pour contrôler moteur courant continu: <u>DRV8830</u>

8.2 Typical Application

Figure 11 is a common application of the DRV8830.

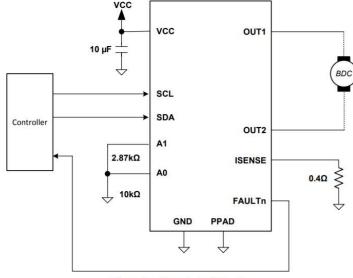
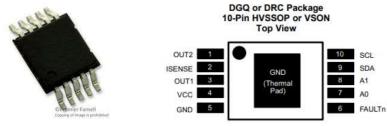



Figure 11. Motor Control Circuitry

The HVSSOP package has a PowerPAD.

Pin Functions

PIN		TYPE(1)	DESCRIPTION	EXTERNAL COMPONENTS	
NAME	NO.	TIPE	DESCRIPTION	OR CONNECTIONS	
A0	7	i i	Address set 0	Connect to GND, VCC, or open to set I ² C	
A1	8	1	Address set 1	base address. See serial interface description.	
FAULTn	6	OD	Fault output	Open-drain output driven low if fault condition present	
GND	5	_	Device ground		
ISENSE	2	10	Current sense resistor	Connect current sense resistor to GND. Resistor value sets current limit level.	
OUT1	JT1 3		Bridge output 1	Comment to make winding	
OUT2	1	0	Bridge output 2	Connect to motor winding	
SCL	10	l l	Serial clock	Clock line of I ² C serial bus	
SDA	9	10	Serial data	Data line of I ² C serial bus	
vcc	4	-	Device and motor supply	Bypass to GND with a 0.1-μF (minimum) ceramic capacitor.	

⁽¹⁾ Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output

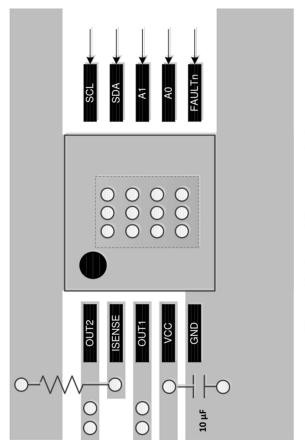
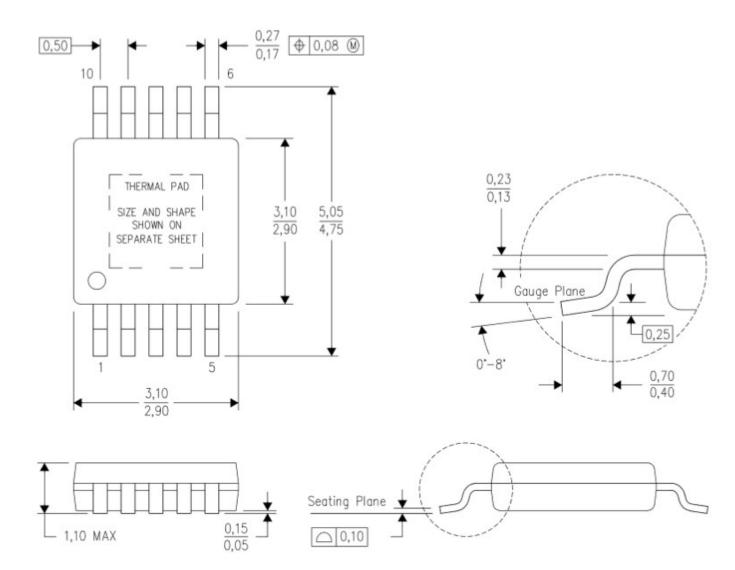
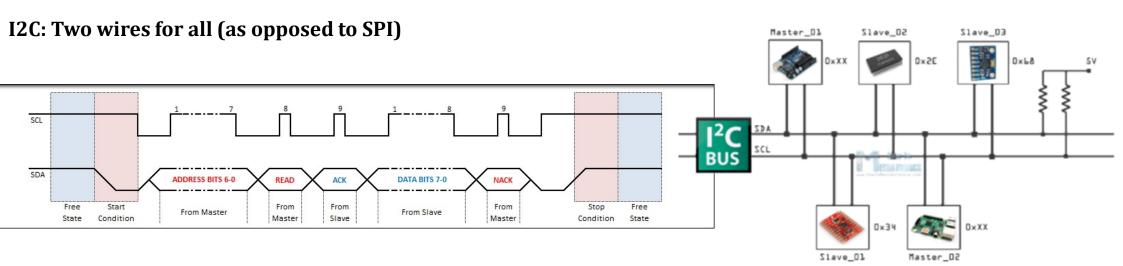
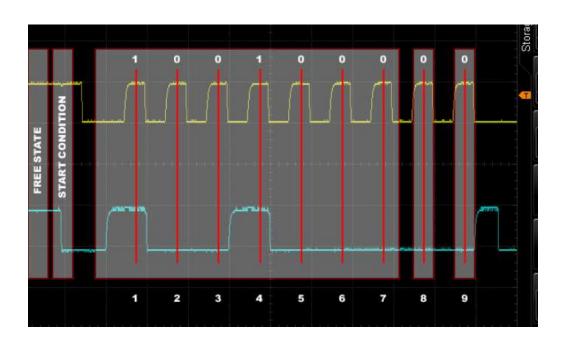
6 Specifications

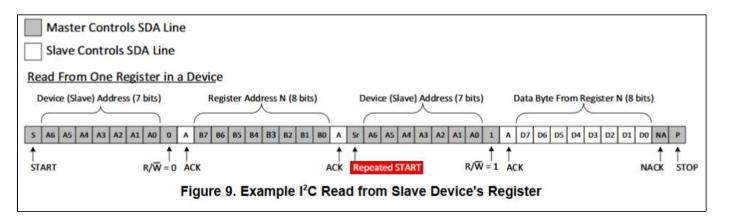
6.1 Absolute Maximum Ratings

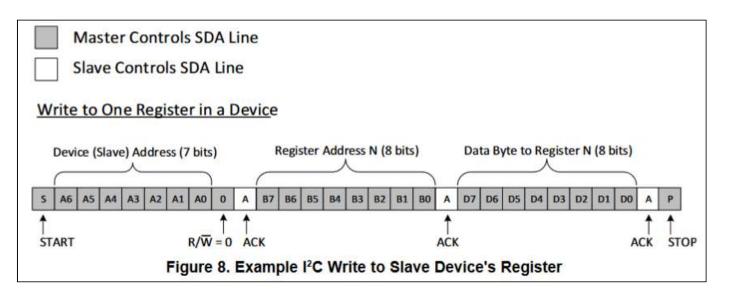
over operating free-air temperature range (unless otherwise noted)(1)(2)

		MIN	MAX	UNIT
vcc	Power supply voltage	-0.3	7	V
	Input pin voltage	-0.5	7	V
	Peak motor drive output current ⁽³⁾	Internally limit	Internally limited	
	Continuous motor drive output current ⁽³⁾	-1	1	Α
	Continuous total power dissipation	See Thermal Infor	mation	
TJ	Operating virtual junction temperature	-40	150	°C
T _{stq}	Storage temperature	-60	150	

10.2 Layout Example


Figure 18. Layout Recommendation



I2C: Two wires for all (as opposed to SPI)

Wire Library

Functions

- begin()
- requestFrom()
- beginTransmission()
- endTransmission()
- write()
- available()
- read()
- SetClock()
- onReceive()
- onRequest()

DRV8830 I2C

DRV8830

w.ti.com SLVSAB2G – MAY 2010 – REVISED DECEMBER 2015

The upper address bits of the device address are fixed at 0xC0h, so the device address is as follows:

Table 5. Device Addresses

A1 PIN	A0 PIN	A3A0 BITS (as below)	ADDRESS (WRITE)	ADDRESS (READ)
0	0	0000	0xC0h	0xC1h
0	open	0001	0xC2h	0xC3h
0	1	0010	0xC4h	0xC5h
open	0	0011	0xC6h	0xC7h
open	open	0100	0xC8h	0xC9h
open	1	0101	0xCAh	0xCBh
1	0	0110	0xCCh	0xCDh
1	open	0111	0xCEh	0xCFh
1	1	1000	0xD0h	0xD1h

The DRV8830 does not respond to the general call address.

A data byte follows the address acknowledge. If the R/W bit is low, the data is written from the master. If the R/W bit is high, the data from this device are the values read from the register previously selected by a write to the subaddress register. The data byte is followed by an acknowledge sent from this device. Data is output only if

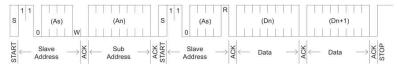


Figure 9. I²C Read Mode

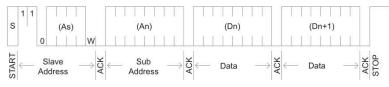


Figure 10. I²C Write Mode

7.6 Register Maps

7.6.1 I²C Register Map

Table 6. I²C Register Map

REGISTER	SUB ADDRESS (HEX)	REGISTER NAME	DEFAULT VALUE	DESCRIPTION
0	0x00	CONTROL	0x00h	Sets state of outputs and output voltage
1	0x01	FAULT	0x00h	Allows reading and clearing of fault conditions

7.6.1.1 REGISTER 0 - CONTROL

The CONTROL register is used to set the state of the outputs as well as the DAC setting for the output voltage. The register is defined as follows:

Table 7. Register 0 - Control

Table 7. Register 0 - Control						
D7 - D2	D1	D0				
VSET[50]	IN2	IN1				

Table 4. H-Bridge Logic

OUT2

FUNCTION

OUT1

0	0	Z	Z	Standby / coast
0	1	L	Н	Reverse
1	0	Н	L	Forward
1	1	Н	Н	Brake

VSET[5..0]: Sets DAC output voltage. Refer to V
IN2: Along with IN1, sets state of outputs
IN1: Along with IN2, sets state of outputs

Table 1. Commanded Output Voltage (continued) OUTPUT VOLTAGE OUTPUT VOLTAGE VSET[5..0] VSET[5..0] 0x10h 1.29 0x30h 3.86 0x11h 1.37 0x31h 3.94 1.45 0x12h 0x32h

7.6.1.2 REGISTER 1 - FAULT

The FAULT register is used to read the source of a fault condition, and to clear the status bits that indicated the fault. The register is defined as follows:

Table 8. Register 1 - Fault

D7	D6 - D5	D4	D3	D2	D1	D0
CLEAR	Unused	ILIMIT	OTS	UVLO	OCP	FAULT

CLEAR: When written to 1, clears the fault status bits

ILIMIT: If set, indicates the fault was caused by an extended current limit event

OTS: If set, indicates that the fault was caused by an overtemperature (OTS) condition

UVLO: If set, indicates the fault was caused by an undervoltage lockout OCP: If set, indicates the fault was caused by an overcurrent (OCP) event

FAULT: Set if any fault condition exists