
The Delta Parallel Robot: Kinematics Solutions
Robert L. Williams II, Ph.D., williar4@ohio.edu

Mechanical Engineering, Ohio University, October 2016

 Clavel’s Delta Robot1 is arguably the most successful commercial parallel robot to date. The left
image below shows the original design from Clavel’s U.S. patent2, and the right photograph below
shows one commercial instantiation of the Delta Robot.

Delta Robot Design1 ABB FlexPicker Delta Robot

www.abb.com

The Delta Robot has 4-degrees-of-freedom (dof), 3-dof for XYZ translation, plus a fourth inner
leg to control a single rotational freedom at the end-effector platform (about the axis perpendicular to the
platform). The remainder of this document will focus only on the 3-dof XYZ translation-only Delta
Robot since that is being widely applied by 3D printers and Arduino hobbyists.

Presented is a description of the 3-dof Delta Robot, followed by kinematics analysis including

analytical solutions for the inverse position kinematics problem and the forward position kinematics
problem, and then examples for both, snapshots and trajectories. The velocity equations are also derived
This is presented for both revolute-input and prismatic-input Delta Robots.

For referencing this document, please use:

R.L. Williams II, “The Delta Parallel Robot: Kinematics Solutions”, Internet Publication,
www.ohio.edu/people/williar4/html/pdf/DeltaKin.pdf, January 2016.

1 R. Clavel, 1991, “Conception d'un robot parallèle rapide à 4 degrés de liberté”, Ph.D. Thesis, EPFL, Lausanne, Switzerland.
2 R. Clavel, 1990, “Device for the Movement and Positioning of an Element in Space”, U.S. Patent No. 4,976,582.

2

Table of Contents

REVOLUTE-INPUT DELTA ROBOT ... 3

REVOLUTE-INPUT DELTA ROBOT DESCRIPTION .. 3
REVOLUTE-INPUT DELTA ROBOT MOBILITY ... 7
PRACTICAL REVOLUTE-INPUT DELTA ROBOTS ... 9
REVOLUTE-INPUT DELTA ROBOT KINEMATICS ANALYSIS ... 10

Inverse Position Kinematics (IPK) Solution ... 11
Forward Position Kinematics (FPK) Solution ... 12
Revolute-Input Delta Robot Velocity Kinematics Equations .. 15

REVOLUTE-INPUT DELTA ROBOT POSITION KINEMATICS EXAMPLES .. 16
Inverse Position Kinematics Examples .. 16
Forward Position Kinematics Examples .. 19

PRISMATIC-INPUT DELTA ROBOT ... 22

PRISMATIC-INPUT DELTA ROBOT DESCRIPTION .. 22
PRISMATIC-INPUT DELTA ROBOT PARAMETERS .. 25
PRACTICAL PRISMATIC-INPUT DELTA ROBOTS .. 26
PRISMATIC-INPUT DELTA ROBOT KINEMATICS ANALYSIS ... 27

Inverse Position Kinematics (IPK) Solution .. 28
Forward Position Kinematics (FPK) Solution ... 30
Prismatic-Input Delta Robot Velocity Kinematics Equations .. 35

PRISMATIC-INPUT DELTA ROBOT POSITION KINEMATICS EXAMPLES .. 36
Inverse Position Kinematics Examples .. 36
Forward Position Kinematics Examples .. 39

ACKNOWLEDGEMENTS ... 40

APPENDICES ... 41

APPENDIX A. THREE-SPHERES INTERSECTION ALGORITHM .. 41
Example .. 43
Imaginary Solutions ... 43
Singularities ... 43
Multiple Solutions .. 44

APPENDIX B. SIMPLIFIED THREE-SPHERES INTERSECTION ALGORITHM .. 45

3

Revolute-Input Delta Robot

Revolute-Input Delta Robot Description

As shown below, the 3-dof Delta Robot is composed of three identical RUU legs in parallel

between the top fixed base and the bottom moving end-effector platform. The top revolute joints are
actuated (indicated by the underbar) via base-fixed rotational actuators. Their control variables are

, 1,2,3i i  about the axes shown. In this model i are measured with the right hand, with zero angle

defined as when the actuated link is in the horizontal plane. The parallelogram 4-bar mechanisms of the
three lower links ensure the translation-only motion. The universal (U) joints are implemented using
three non-collocated revolute (R) joints (two parallel and one perpendicular, six places) as shown below.

Delta Parallel Robot Diagram

adapted from: elmomc.com/capabilities

4

The three-dof Delta Robot is capable of XYZ translational control of its moving platform within
its workspace. Viewing the three identical RUU chains as legs, points , 1,2,3iB i  are the hips, points

, 1,2,3iA i  are the knees, and points , 1,2,3iP i  are the ankles. The side length of the base

equilateral triangle is sB and the side length of the moving platform equilateral triangle is sP. The
moving platform equilateral triangle is inverted with respect to the base equilateral triangle as shown, in
a constant orientation.

Delta Robot Kinematic Diagram

The fixed base Cartesian reference frame is {B}, whose origin is located in the center of the base

equilateral triangle. The moving platform Cartesian reference frame is {P}, whose origin is located in
the center of the platform equilateral triangle. The orientation of {P} is always identical to the

orientation of {B} so rotation matrix 3
B
P R I is constant. The joint variables are  1 2 3

T  Θ , and

the Cartesian variables are  TB
P x y zP . The design shown has high symmetry, with three upper

leg lengths L and three lower lengths l (the parallelogram four-bar mechanisms major lengths).

The Delta Robot fixed base and platform geometric details are shown on the next page.

5

Delta Robot Fixed Base Details

Delta Robot Moving Platform Details

6

The fixed-base revolute joint points iB are constant in the base frame {B} and the platform-fixed

U-joint connection points iP are constant in the base frame {P}:

1

0

0

B
Bw

 
   
 
 

B 2

3

2
1

2
0

B

B
B

w

w

 
 
 
   
 
 
 
 

B 3

3

2
1

2
0

B

B
B

w

w

 
 
 
   
 
 
 
 

B

1

0

0

P
Pu

 
   
 
 

P 2

2

0

P

P
P

s

w

 
 
 

  
 
 
 

P 3

2

0

P

P
P

s

w

  
 

  
 
 
 

P

The vertices of the fixed-based equilateral triangle are:

1

2

0

B

B
B

s

w

 
 
 

  
 
 
 

b 2

0

0

B
Bu

 
   
 
 

b 3

2

0

B

B
B

s

w

  
 

  
 
 
 

b

where:

3

6B Bw s
3

3B Bu s
3

6P Pw s
3

3P Pu s

name meaning value (mm)
sB base equilateral triangle side 567
sP platform equilateral triangle side 76
L upper legs length 524
l lower legs parallelogram length 1244
h lower legs parallelogram width 131
wB planar distance from {0} to near base side 164
uB planar distance from {0} to a base vertex 327
wP planar distance from {P} to near platform side 22
uP planar distance from {P} to a platform vertex 44

The model values above are for a specific commercial delta robot, the ABB FlexPicker IRB 360-1/1600,
scaled from a figure (new.abb.com/products). Though Delta Robot symmetry is assumed, the following
methods may be adapted to the general case.

7

Revolute-Input Delta Robot Mobility

This section proves that the mobility (the number of degrees-of-freedom) for the Delta robot is
indeed 3-dof. Using the spatial Kutzbach mobility equation for the previous Delta Robot figure:

1 2 36(1) 5 4 3M N J J J    

 where:
 M is the mobility, or number of degrees-of-freedom
 N is the total number of links, including ground
 J1 is the number of one-dof joints
 J2 is the number of two-dof joints
 J3 is the number of three-dof joints

J1 – one-dof joints: revolute and prismatic joints
J2 – two-dof joints: universal joint
J3 – three-dof joints: spherical joint

For the as-designed Delta Robot, we have:

1

2

3

17

21

0

0

N

J

J

J






6(17 1) 5(21) 4(0) 3(0)

9 dof

M

M

    
 

As often happens, the Kutzbach equation fails because the result must obviously be 3-dof. This result
predicts the Delta is a severely overconstrained statically indeterminate structure, which is incorrect.
 The Kutzbach equation knows nothing about special geometry – in the Delta Robot case, there
are three parallel four-bar mechanisms. The overall robot would work kinematically identically to the
original Delta Robot if we removed one of the long parallel four-bar mechanism links, along with two
revolute joints each. With this equivalent case, the Kutzbach equation yields:

1

2

3

14

15

0

0

N

J

J

J






6(14 1) 5(15) 4(0) 3(0)

3 dof

M

M

    


which is correct. An alternative approach to calculating the Delta Robot mobility is by ignoring the
three parallel four-bar mechanisms, replacing each with a single link instead. In this we must count a
universal joint at either end of this virtual link. This approach follows the simplified Delta Robot
naming convention 3-RUU. The Kutzbach equation for this case also succeeds:

8

1

2

3

8

3

6

0

N

J

J

J






6(8 1) 5(3) 4(6) 3(0)

3 dof

M

M

    


Either of the second two approaches works. The author prefers the former since it is closer to the actual
Delta Robot design.

9

Practical Revolute-Input Delta Robots

Delta Chocolate-Handling Robot Delta Pick-and-Place Robots
sti.epfl.ch en.wikipedia.org/wiki/Delta_robot

Delta Robot 3D Printer Sketchy Delta Robot
en.wikipedia.org/wiki/Delta_robot en.wikipedia.org/wiki/Delta_robot

Novint Falcon Haptic Interface Fanuc Delta Robot
images.bit-tech.net robot.fanucamerica.com

10

Revolute-Input Delta Robot Kinematics Analysis

 From the kinematic diagram above, the following three vector-loop closure equations are written
for the Delta Robot:

             B B B B B P B P
i i i P P i P i       B L l P R P P P 1,2,3i 

where  3

B
P   R I since no rotations are allowed by the Delta Robot.

The three applicable constraints state that the lower leg lengths must have the correct, constant
length l (the virtual length through the center of each parallelogram):

         B B P B B
i i P i i il     l P P B L 1,2,3i 

It will be more convenient to square both sides of the constraint equations above to avoid the square-root
in the Euclidean norms:

  2
2 2 2 2B
i i ix iy izl l l l   l 1,2,3i 

 Again, the Cartesian variables are  TB
P x y zP . The constant vector values for points iP

and iB were given previously. The vectors  B
iL are dependent on the joint variables

 1 2 3

T  Θ :

1 1

1

0

cos

sin

B L

L




 
   
  

L

2

2 2

2

3
cos

2
1

cos
2

sin

B

L

L

L







 
 
 
   
 
 

 
 

L

3

3 3

3

3
cos

2
1

cos
2

sin

B

L

L

L







 
 
 
   
 

 
 
 

L

Substituting all above values into the vector-loop closure equations yields:

 1 1

1

cos

sin

B

x

y L a

z L




 
    
  

l  

2

2 2

2

3
cos

2
1

cos
2

sin

B

x L b

y L c

z L







 
  

 
    
 

 
 
 

l  

3

3 3

3

3
cos

2
1

cos
2

sin

B

x L b

y L c

z L







 
  

 
    
 

 
 
 

l

11

 where:
3

2 2
1

2

B P

P
B

P B

a w u

s
b w

c w w

 

 

 

And the three constraint equations yield the kinematics equations for the Delta Robot:

2 2 2 2 2 2
1 1

2 2 2 2 2 2 2
2 2

2 2 2 2 2 2 2
3 3

2 () cos 2 sin 2 0

(3()) cos 2 sin 2 2 0

(3()) cos 2 sin 2 2 0

L y a zL x y z a L ya l

L x b y c zL x y z b c L xb yc l

L x b y c zL x y z b c L xb yc l

 

 

 

         

              

             

The three absolute vector knee points are found using B B B
i i i A B L , 1,2,3i  :

1 1

1

0

cos

sin

B
Bw L

L




 
    
  

A

2

2 2

2

3
(cos)

2
1

(cos)
2

sin

B

B
B

w L

w L

L







 
 

 
   
 

 
 
 

A

3

3 3

3

3
(cos)

2
1

(cos)
2

sin

B

B
B

w L

w L

L







 
  
 
   
 

 
 
 

A

Inverse Position Kinematics (IPK) Solution

The 3-dof Delta Robot inverse position kinematics (IPK) problem is stated: Given the Cartesian

position of the moving platform control point (the origin of {P}),  TB
P x y zP , calculate the three

required actuated revolute joint angles  1 2 3

T  Θ . The IPK solution for parallel robots is often

straightforward; the IPK solution for the Delta Robot is not trivial, but can be found analytically.
Referring to the Delta Robot kinematic diagram above, the IPK problem can be solved independently for
each of the three RUU legs. Geometrically, each leg IPK solution is the intersection between a known

circle (radius L, centered on the base triangle R joint point B
iB) and a known sphere (radius l, centered

on the moving platform vertex P
iP).

This solution may be done geometrically/trigonometrically. However, we will now accomplish

this IPK solution analytically, using the three constraint equations applied to the vector loop-closure
equations (derived previously). The three independent scalar IPK equations are of the form:

cos sin 0i i i i iE F G    1,2,3i 

where:

12

1

1

2 2 2 2 2 2
1

2 ()

2

2

E L y a

F zL

G x y z a L ya l

 


      

2

2

2 2 2 2 2 2 2
2

(3())

2

2()

E L x b y c

F zL

G x y z b c L xb yc l

    


        

3

3

2 2 2 2 2 2 2
3

(3())

2

2()

E L x b y c

F zL

G x y z b c L xb yc l

   



         

The equation cos sin 0i i i i iE F G    appears a lot in robot and mechanism kinematics and is readily

solved using the Tangent Half-Angle Substitution.

If we define tan
2

i
it


 then

2

2

1
cos

1
i

i
i

t

t
 



 and 2

2
sin

1
i

i
i

t

t
 



Substitute the Tangent Half-Angle Substitution into the EFG equation:

2

2 2

1 2
0

1 1
i i

i i i
i i

t t
E F G

t t

   
         

 2 2(1) (2) (1) 0i i i i i iE t F t G t    

2() (2) () 0i i i i i i iG E t F t G E     quadratic formula:
1,2

2 2 2
i i i i

i
i i

F E F G
t

G E

   




 Solve for i by inverting the original Tangent Half-Angle Substitution definition:

12 tan ()i it 

Two i solutions result from the  in the quadratic formula. Both are correct since there are two valid

solutions – knee left and knee right. This yields two IPK branch solutions for each leg of the Delta
Robot, for a total of 8 possible valid solutions. Generally the one solution with all knees kinked out
instead of in will be chosen.

Forward Position Kinematics (FPK) Solution

The 3-dof Delta Robot forward position kinematics (FPK) problem is stated: Given the three

actuated joint angles  1 2 3

T  Θ , calculate the resulting Cartesian position of the moving platform

control point (the origin of {P}),  TB
P x y zP . The FPK solution for parallel robots is generally

very difficult. It requires the solution of multiple coupled nonlinear algebraic equations, from the three
constraint equations applied to the vector loop-closure equations (derived previously). Multiple valid
solutions generally result.

13

Thanks to the translation-only motion of the 3-dof Delta Robot, there is a straightforward

analytical solution for which the correct solution set is easily chosen. Since  1 2 3

T  Θ are given,

we calculate the three absolute vector knee points using B B B
i i i A B L , 1,2,3i  . Referring to the

Delta Robot FPK diagram below, since we know that the moving platform orientation is constant,

always horizontal with  3
B
P   R I , we define three virtual sphere centers B B P

iv i i A A P , 1,2,3i  :

1 1

1

0

cos

sin

B
v B Pw L u

L




 
     
  

A

2

2 2

2

3
(cos)

2 2
1

(cos)
2

sin

P
B

B
v B P

s
w L

w L w

L







 
  

 
    
 

 
 
 

A

3

3 3

3

3
(cos)

2 2
1

(cos)
2

sin

P
B

B
v B P

s
w L

w L w

L







 
   
 
    
 

 
 
 

A

and then the Delta Robot FPK solution is the intersection point of three known spheres. Let a sphere be
referred as a vector center point {c} and scalar radius r, ({c}, r). Therefore, the FPK unknown point

 B
PP is the intersection of the three known spheres:

( 1
B

vA , l) ( 2
B

vA , l) ( 3
B

vA , l).

Delta Robot FPK Diagram

14

Appendix A presents an analytical solution for the intersection point of the three given spheres,
from Williams et al.3 This solution also requires the solving of coupled transcendental equations. The
appendix presents the equations and analytical solution methods, and then discusses imaginary solutions,
singularities, and multiple solutions that can plague the algorithm, but all turn out to be no problem in
this design.

In particular, with this existing three-spheres-intersection algorithm, if all three given sphere

centers  B
ivA have the same Z height (a common case for the Delta Robot), there will be an

algorithmic singularity preventing a successful solution (dividing by zero). One way to fix this problem

is to simple rotate coordinates so all  B
ivA Z values are no longer the same, taking care to reverse this

coordinate transformation after the solution is accomplished. However, we present another solution
(Appendix B) for the intersection of three spheres assuming that all three sphere Z heights are identical,
to be used in place of the primary solution when necessary.

Another applicable problem to be addressed is that the intersection of three spheres yields two

solutions in general (only one solution if the spheres meet tangentially, and zero solutions if the center
distance is too great for the given sphere radii l – in this latter case the solution is imaginary and the
input data is not consistent with Delta Robot assembly). The spheres-intersection algorithm calculates
both solution sets and it is possible to automatically make the computer choose the correct solution by
ensuring it is below the base triangle rather than above it.

This three-spheres-intersection approach to the FPK for the Delta Robot yields results identical

to solving the three kinematics equations for  TB
P x y zP given  1 2 3

T  Θ .

3 R.L. Williams II, J.S. Albus, and R.V. Bostelman, 2004, “3D Cable-Based Cartesian Metrology
System”, Journal of Robotic Systems, 21(5): 237-257.

15

Revolute-Input Delta Robot Velocity Kinematics Equations

The revolute-input Delta Robot velocity kinematics equations come from the first time derivative
of the three position constraint equations presented earlier:

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3

2 cos 2 () sin 2 sin 2 cos 2 2() 2 0

(3)cos (3()) sin 2 sin 2 cos 2() 2() 2 0

(3)cos (3()) sin 2 sin 2

Ly L y a Lz Lz xx y a y zz

L x y L x b y c Lz Lz x b x y c y zz

L x y L x b y c Lz

     

     

   

        

             

      

    
     
   3 3cos 2() 2() 2 0Lz x b x y c y zz          

Re-written:

1 1 1 1 1 1

2 2 2 2 2 2

3 3

() cos sin () sin cos

2() 2() (3)cos 2 2 sin (3()) sin 2 cos

2() 2() (3)cos 2 2 sin (3()

xx y a y Ly zz Lz L y a Lz

x b x y c y L x y zz Lz L x b y c Lz

x b x y c y L x y zz Lz L x b y

     

     

 

       

            

          

     
      

      3 3 3 3) sin 2 cosc Lz    

Written in matrix-vector form:

     

1 1 11 1

2 2 2 22 2

33 33 3 3

cos sin 0 0

2() 3 cos 2() cos 2(sin) 0 0

0 02() 3 cos 2() cos 2(sin)

x y a L z L x b

x b L y c L z L y b

z bx b L y c L z L

  
   

  

        
                 

                 

A X = B Θ





where:

 11 1 1

22 2 2

33 3 3

() sin cos

(3()) sin 2 cos

(3()) sin 2 cos

b L y a z

b L x b y c z

b L x b y c z

 

 

 

  

       
      

16

Revolute-Input Delta Robot Position Kinematics Examples
For these examples, the Delta Robot dimensions are from the table given earlier for the ABB

FlexPicker IRB 360-1/1600, sB = 0.567, sP = 0.076, L = 0.524, l = 1.244, and h = 0.131 (m).

Inverse Position Kinematics Examples

Snapshot Examples Nominal Position. Given    0 0 0.9
TB

P  P m, the calculated IPK

results are (the preferred kinked out solution):

 20.5 20.5 20.5
T

   Θ   

General Position. Given    0.3 0.5 1.1
TB

P  P m, the calculated IPK results are (the preferred

kinked out solution):

 47.5 11.6 21.4
T

 Θ   

General Inverse Position Snapshot Example

17

IPK Trajectory Example

The moving platform control point {P} traces an XY circle of center  0 0 1
T m and radius 0.5

m. At the same time, the Z displacement goes through 2 complete sine wave motions centered on 1Z  
m with a 0.2 m amplitude.

This IPK trajectory, at the end of motion, is pictured along with the simulated Delta Parallel

Robot, in the MATLAB graphics below.

XY Circular Trajectory with Z sine wave

18

Commanded IPK Cartesian Positions

Calculated IPK Joint Angles

19

Forward Position Kinematics Examples

Snapshot Examples Nominal Position. Given  0 0 0
T

Θ , the calculated FPK results are

(the admissible solution below the base, using the equal-Z-heights spheres intersection algorithm):

   0 0 1.065
TB

P  P m

General Position. Given  10 20 30
T

Θ    m, the calculated FPK results are (the admissible

solution below the base, using the non-equal-Z-heights spheres intersection algorithm):

   0.108 0.180 1.244
TB

P   P m

General Forward Position Snapshot Example

Circular Check Examples
 All snapshot examples were reversed to show that the circular check validation works; i.e.: When

given    0 0 1.065
TB

P  P , the IPK solution calculated  0 0 0
T

Θ and when given

   0.108 0.180 1.244
TB

P   P , the IPK solution calculated  10 20 30
T

Θ    . When given

 20.5 20.5 20.5
T

   Θ    , the FPK solution calculated    0 0 0.9
TB

P  P and when given

 47.5 11.6 21.4
T

 Θ    , the FPK solution calculated    0.3 0.5 1.1
TB

P  P .

20

FPK Trajectory Example

The IPK solution is more useful for Delta Robot control, to specify where the tool should be in

XYZ. This FPK trajectory example is just for demonstration purposes, not yielding any useful robot
motion. Simultaneously the three revolute joint angles are commanded as follows:

1 max

2 max

3 max

() sin()

() sin(2)

() sin(3)

t t

t t

t t

 
 
 






where max 45   and t proceeds from 0 to 2 in 100 steps. This closed FPK trajectory, at the end of

motion, is pictured along with the simulated Delta Parallel Robot, in the MATLAB graphics below

FPK Trajectory

21

Commanded FPK Joint Angles

Calculated FPK Cartesian Positions

22

Prismatic-Input Delta Robot

Prismatic-Input Delta Robot Description

The Prismatic-Input Delta Robot is fundamentally similar to the original Revolute-Input Delta
Robot. The major difference is that the three inputs now are driven by three linear-sliding prismatic
joints instead of three revolute joints. This design change simplifies the kinematics equations and the
IPK and FPK equations and solutions significantly, because the three prismatic inputs are aligned with
the {B} frame Z axis, and there are no sines nor cosines required as in the revolute-input case.

As shown below, the 3-dof prismatic-input Delta Robot is composed of three identical PUU legs

in parallel between the top fixed base and the bottom moving end-effector platform. The control
variables are , 1,2,3iL i  . In this model a positive change in iL is downward, in the BZ direction.

The three-dof Delta Robot is again capable of XYZ translational control of its moving platform within its

workspace. The joint variables are  1 2 3

T
L L LL , and the Cartesian variables are  TB

P x y zP .

Delta Robot Kinematic Diagram – Prismatic Inputs

This robot is also known as the Linear Delta Robot or the Linear-Rail Delta Robot. The constant

geometry (base points, platform vertices, etc.) presented earlier for the revolute-input Delta robot still
apply to the prismatic-input Delta Robot. Also, the Mobility (dof) calculations for the prismatic-input
case are identical to that presented for the revolute-input case, yielding M = 3. The Prismatic-Input
Delta Robot fixed base and platform geometric details are shown on the next page.

23

Prismatic-Input Delta Robot Fixed Base Details

Prismatic-Input Delta Robot Moving Platform Details

24

The fixed-base prismatic joint points iB are constant in the base frame {B} and the platform-

fixed U-joint connection points iP are constant in the base frame {P}. Both lie on the vertices of

equilateral triangles, of sides SB and sP, respectively.

1

2

0

B

P
B

S

W

  
 

  
 
 
 

B 2

2

0

B

P
B

S

W

 
 
 

  
 
 
 

B 3

0

0

P
BU

 
   
 
 

B

1

2

0

P

P
P

s

w

  
 

  
 
 
 

P 2

2

0

P

P
P

s

w

 
 
 

  
 
 
 

P 3

0

0

P
Pu

 
   
 
 

P

The vertices of the fixed-based equilateral triangle are not directly used in the kinematics

equations; they are used in MATLAB graphics for the support frame:

1

2

0

b

B
b

s

w

  
 

  
 
 
 

b 2

2

0

b

B
b

s

w

 
 
 

  
 
 
 

b 3

0

0

B
bu

 
   
 
 

b

where:

3

6B BW S
3

3B BU S
3

6b bw s
3

3b bu s

3

6P Pw s
3

3P Pu s

25

Prismatic-Input Delta Robot Parameters

name meaning value (mm)

sb base equilateral triangle side 432

wb planar distance from {0} to near base side 124.7

ub planar distance from {0} to a base vertex 249.4

H frame height 686

SB P joints (Bi) equilateral triangle side 246

WB same as wb, for P joints equilateral triangle 71

UB same as ub, for P joints equilateral triangle 142

sP platform equilateral triangle side 127

wP planar distance from {P} to near platform side 37

uP planar distance from {P} to a platform vertex 73

oX nozzle X offset 10

oY nozzle Y offset 30

Lmin i = 1,2,3 minimum prismatic joints lengths 67

Lmax i = 1,2,3 maximum prismatic joints lengths 479

l lower legs parallelogram length 264

h lower legs parallelogram width 44

The model values above are for a specific commercial prismatic-input delta robot 3D printer, the
Delta Maker (deltamaker.com). Though Delta Robot symmetry is assumed, the following methods may
be adapted to the general case for the prismatic-input delta robot.

 Note that each individual prismatic length limits are 67 479iL  mm; however, for all three

prismatic lengths equal, 358iL  mm is the maximum extent to avoid motion through the 3D printing

surface.

26

Practical Prismatic-Input Delta Robots

forums.reprap.org

deltamaker.com

27

Prismatic-Input Delta Robot Kinematics Analysis

 From the kinematic diagram above, the following three vector-loop closure equations are written
for the Delta Robot:

             B B B B B P B P
i i i P P i P i       B L l P R P P P 1,2,3i 

The three applicable constraints state that the lower leg lengths must have the correct, constant length l
(the virtual length through the center of each parallelogram):

         B B P B B
i i P i i il     l P P B L 1,2,3i 

It will be more convenient to square both sides of the constraint equations above to avoid the square-root
in the Euclidean norms:

  2
2 2 2 2B
i i ix iy izl l l l   l 1,2,3i 

 Again, the Cartesian variables are  TB
P x y zP . The constant vector values for points iP

and iB were given previously. The vectors  B
iL are dependent on the joint variables

 1 2 3

T
L L LL ; these formulas are much simpler than those for the rotational-input case presented

earlier:

0

0B
i

iL

 
   
  

L 1,2,3i 

Substituting all above values into the vector-loop closure equations yields:

 1
1

B

x a

y b

z L

 
   
  

l  2

2

B

x a

y b

z L

 
   
  

l  3

3

B

x

y c

z L

 
   
  

l

 where:
2 2

B P

B P

P B

S s
a

b W w

c u U

 

 
 

And the three constraint equations yield the kinematics equations for the prismatic-input Delta Robot:

28

2 2 2 2 2 2 2
1 1

2 2 2 2 2 2 2
2 2

2 2 2 2 2 2
3 3

2 2 2 0

2 2 2 0

2 2 0

x y z a b ax by zL L l

x y z a b ax by zL L l

x y z c cy zL L l

         

         

       

The three absolute vector knee points are found using B B B
i i i A B L , 1,2,3i  :

1

1

2
B

B
B

S

W

L

  
 

  
  
 

A 2

2

2
B

B
B

S

W

L

 
 
 

  
  
 

A 3

3

0
B

BU

L

 
   
  

A

Inverse Position Kinematics (IPK) Solution

The 3-dof prismatic-input Delta Robot inverse position kinematics (IPK) problem is stated:

Given the Cartesian position of the moving platform control point (the origin of {P}),  TB
P x y zP ,

calculate the three required actuated prismatic joint angles  1 2 3

T
L L LL . The IPK solution for the

prismatic-input Delta Robot is much simpler than that for the revolute-input Delta robot presented
earlier and is easily found analytically. Referring to the prismatic-input Delta Robot kinematic diagram
above, the IPK problem can be solved independently for each of the three PUU legs. Geometrically,
each leg IPK solution is the intersection between a vertical line of unknown length Li (passing through

base point B
iB) and a known sphere (radius l, centered on the moving platform vertex P

iP).

This solution may be done geometrically/trigonometrically. However, we will now accomplish

this IPK solution analytically, using the three constraint equations independently (derived previously).
The three independent scalar IPK equations are quadratic equations of the form:

2 2 0i i iL zL C   1,2,3i 

where:

2 2 2 2 2 2
1

2 2 2 2 2 2
2

2 2 2 2 2
3

2 2

2 2

2

C x y z a b ax by l

C x y z a b ax by l

C x y z c cy l

       

       

     

So we simply have three independent quadratic equations to solve for the prismatic-length inputs Li, for
each leg independently, where Ai = 1, Bi = 2z, and the Ci are given above. The IPK solution simplifies
quite nicely:

2
i iL z z C    1,2,3i 

29

Two Li solutions result from the  in the quadratic formula. These solutions can be referred to as knee
up and knee down for each leg. This yields two IPK branch solutions for each leg of the prismatic-input
Delta Robot, for a total of 8 possible solutions. Generally the one overall solution with all knees up will
be chosen.

 When 2
iz C , the solution for Li is imaginary. This case should never occur in theory since the

prismatic joint can extend as far as needed to maintain a real solution for each leg. However, in practice,

there are of course prismatic joint limits. When 2
iz C , the two solution branches (knee up and knee

down) have become the same solution.

 The IPK input xyz is for the moving platform geometric center. When the desired control point
is offset from the center (as in the case of many 3D printers), an initial transformation is required prior to
implementing the IPK solution:

1B B P
P N NT T T        

where

1 0 0

0 1 0

0 0 1 0

0 0 0 1

X

YP
N

O

O
T

 
 
      
 
 

 and
1

1 0 0

0 1 0

0 0 1 0

0 0 0 1

X

YP
N

O

O
T

 
       
 
 

This is a very simple transformation since the prismatic-input Delta Robot allows only translational

motion, with  3
B B
P NR R I        . To save a lot of computations with 1s and 0s, simply subtract OX and

OY from the x and y components, respectively, of the given (xyz)N to obtain the IPK moving-platform-
center input xyz. N stands for nozzle in a 3D printer. The z component is unchanged in this
transformation.

30

Forward Position Kinematics (FPK) Solution

The 3-dof prismatic-input Delta Robot forward position kinematics (FPK) problem is stated:

Given the three actuated joint angles  1 2 3

T
L L LL , calculate the resulting Cartesian position of the

moving platform control point (the origin of {P}),  TB
P x y zP . The FPK solution for parallel

robots is generally very difficult. It requires the solution of multiple coupled nonlinear algebraic
equations, from the three constraint equations applied to the vector loop-closure equations (derived
previously). Multiple valid solutions generally result.

Thanks to the translation-only motion of the 3-dof Delta Robot, there is a straightforward

analytical solution for which the correct solution set is easily chosen. Since  1 2 3

T
L L LL are

given, we calculate the three absolute vector knee points using B B B
i i i A B L , 1,2,3i  . Referring to

the prismatic-input Delta Robot FPK diagram below, since we know that the moving platform

orientation is constant, always horizontal with  3
B
P  R I , we define three virtual sphere centers

B B P
iv i i A A P , 1,2,3i  :

1

1

2 2
B P

B
v B P

S s

W w

L

   
 

   
  
 

A 2

2

2 2
B P

B
v B P

S s

W w

L

  
 

   
  
 

A 3

3

0
B

v B PU u

L

 
   
  

A

and then the prismatic-input Delta Robot FPK solution is the intersection point of three known spheres.
Let a sphere be referred as a vector center point {c} and scalar radius r, ({c}, r). Therefore, the FPK

unknown point  B
PP is the intersection of the three known spheres:

( 1
B

vA , l) ( 2
B

vA , l) ( 3
B

vA , l).

31

Delta Robot FPK Diagram – Prismatic Inputs

Appendix A presents an analytical solution for the intersection point of the three given spheres,

from Williams et al.4 This solution also requires the solving of coupled transcendental equations. The
appendix presents the equations and analytical solution methods, and then discusses imaginary solutions,
singularities, and multiple solutions that can plague the algorithm, but all turn out to be no problem in
this design.

In particular, with this existing three-spheres-intersection algorithm, if all three given sphere

centers  B
ivA have the same Z height (a common case for the Delta Robot), there will be an

algorithmic singularity preventing a successful solution (dividing by zero). One way to fix this problem

is to simple rotate coordinates so all  B
ivA Z values are no longer the same, taking care to reverse this

coordinate transformation after the solution is accomplished. However, we present another solution

4 R.L. Williams II, J.S. Albus, and R.V. Bostelman, 2004, “3D Cable-Based Cartesian Metrology
System”, Journal of Robotic Systems, 21(5): 237-257.

32

(Appendix B) for the intersection of three spheres assuming that all three sphere Z heights are identical,
to be used in place of the primary solution when necessary.

Another applicable problem to be addressed is that the intersection of three spheres yields two

solutions in general (only one solution if the spheres meet tangentially, and zero solutions if the center
distance is too great for the given sphere radii l – in this latter case the solution is imaginary and the
input data is not consistent with prismatic-input Delta Robot assembly). The spheres-intersection
algorithm calculates both solution sets and it is possible to automatically make the computer choose the
correct solution by ensuring it is below the base triangle rather than above it.

 The FPK solution xyz is for the moving platform geometric center. When the desired control
point is offset from the center (as in the case of many 3D printers), a further transformation is required
after to implementing the FPK solution:

B B P
N P NT T T        

where P
NT   was given previously with the IPK solution. This is a very simple transformation since the

prismatic-input Delta Robot allows only translational motion, with  3
B B
P NR R I        . To save a lot of

computations with 1s and 0s, simply add OX and OY to the x and y components, respectively, of the FPK
moving-platform-center solution xyz, to obtain the desired FPK solution (xyz)N. The z component is
unchanged in this transformation.

33

Alternate FPK Solution

This three-spheres-intersection approach to the FPK for the prismatic-input Delta Robot yields

results identical to solving the three kinematics equations for  TB
P x y zP given  1 2 3

T
L L LL .

Since the three constraint equations for the prismatic-input Delta Robot are much simpler than those for
the revolute-input Delta Robot, we now present an alternative FPK analytical solution. The three
constraint equations are repeated below:

2 2 2 2 2 2 2

1 1

2 2 2 2 2 2 2
2 2

2 2 2 2 2 2
3 3

2 2 2 0

2 2 2 0

2 2 0

x y z a b ax by zL L l

x y z a b ax by zL L l

x y z c cy zL L l

         

         

       

Subtracting the second equation from the first equation yields a linear equation, expressing x as a
function of z only:

()x f z dz e  

 where:

2 1

2

L L
d

a




2 2
2 1

4

L L
e

a




Further, subtracting the third equation from the first equation and substituting ()x f z from above
yields another linear equation, expressing y as a function of z only:

()y g z Dz E  

 where:

3 1L L ad
D

b c

 




2 2 2 2 2
3 12

2()

c a b ae L L
E

b c

    




 Substituting both ()x f z and ()y g z into the third equation yields a single equation in one
unknown z, a quadratic polynomial:

2 0Az Bz C  

 where:

2 2

3

2 2 2 2 2
3

1

2()

2

A d D

B de DE cD L

C e E c cE L l

  
   

     

And so the alternate analytical FPK solution is:

34

2

1,2

1,2 1,2 1,2

1,2 1,2 1,2

4

2

()

()

B B AC
z

A

x f z dz e

y g z Dz E

  


  

  

There are two possible solution sets 1 1 1(, ,)x y z and 2 2 2(, ,)x y z , due to the  in the quadratic formula.

Generally only one solution will be used, the one where xyz is below the top-mounted base triangle.

35

Prismatic-Input Delta Robot Velocity Kinematics Equations

The prismatic-input Delta Robot velocity kinematics equations come from the first time
derivative of the three position constraint equations presented earlier:

1 1 1

2 2 2

3 3 3

() () () ()

() () () ()

() () ()

x a x y b y z L z z L L

x a x y b y z L z z L L

xx y c y z L z z L L

       

       

      

  
  
  

Written in matrix-vector form:

     

1 1 1

2 2 2

3 3 3

0 0

0 0

0 0

x a y b z L x z L L

x a y b z L y z L L

x y c z L z z L L

         
                

               

A X = B L 





The forward velocity solution is:

      1
X = A B L 

And the inverse velocity solution is:

      1

1 1
1

2
2 2

3

3 3

1

1

1

x a y b

z L z L
L x

x a y b
L y

z L z L
L z

x y c

z L z L



  
      
                    
 

  

L B A X 

 
 
 

36

Prismatic-Input Delta Robot Position Kinematics Examples
For these examples, the prismatic-input Delta Robot dimensions are from the table given earlier

for the Delta Maker 3D Printer, sb = 0.432, SB = 0.246, sP = 0.127, l = 0.264, and h = 0.044 (m).

Inverse Position Kinematics Examples

Snapshot Examples Nominal Position. Given    0 0 0.5
TB

P  P m, the calculated IPK

results are (the preferred lower solution):

 0.2451 0.2451 0.2451
TL m

General Position. Given    0.03 0.05 0.40
TB

P  P m, the calculated IPK results are (the preferred

kinked out solution):

 0.1664 0.1516 0.1384
TL m

General Inverse Position Snapshot Example

-0.4-0.20
0.2

-0.4
-0.2
0

0.2

-0.6
-0.4
-0.2

0

XY

Z

-0.4-0.200.2

-0.6

-0.4

-0.2

0

Y

Z

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4

X

Y

-0.4 -0.2 0 0.2

-0.6

-0.4

-0.2

0

X

Z

37

IPK Trajectory Example

The moving platform control point {P} traces an XY circle of center  0 0 0.5
T m and radius

0.1 m. At the same time, the Z displacement goes through 2 complete sine wave motions centered on
1Z   m with a 0.05 m amplitude.

This IPK trajectory, at the end of motion, is pictured along with the simulated Delta Parallel

Robot, in the MATLAB graphics below.

XY Circular Trajectory with Z sine wave

-0.4-0.20
0.2

-0.4
-0.2
0

0.2

-0.6

-0.4
-0.2

0

XY

Z

-0.4-0.200.2

-0.6

-0.4

-0.2

0

Y

Z

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4

X

Y

-0.4 -0.2 0 0.2

-0.6

-0.4

-0.2

0

X

Z

38

Commanded IPK Cartesian Positions

Calculated IPK Joint Angles

0 10 20 30 40 50 60 70

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Steps

X
 (

m
)

x
P

y
P

z
P

0 10 20 30 40 50 60 70
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Jo
in

t
Le

ng
th

s
(m

)

Time Steps

L
1

L
2

L
3

39

Forward Position Kinematics Examples

Snapshot Examples Nominal Position. Given  0.2 0.2 0.2
TL m, the calculated FPK

results are (the admissible lower solution, using the equal-Z-heights spheres intersection algorithm):

   0 0 0.4549
TB

P  P m

General Position. Given  0.14 0.15 0.16
TL m, the calculated FPK results are (the admissible

lower solution, using the non-equal-Z-heights spheres intersection algorithm):

   0.0215 0.0363 0.4012
TB

P    P m

General Forward Position Snapshot Example

Circular Check Examples
 All snapshot examples were reversed to show that the circular check validation works; i.e.:

When given    0 0 0.4549
TB

P  P , the IPK solution calculated  0.2 0.2 0.2
TL and when

given    0.0215 0.0363 0.4012
TB

P    P , the IPK solution calculated  0.14 0.15 0.16
TL .

When given  0.2451 0.2451 0.2451
TL , the FPK solution calculated    0 0 0.5

TB
P  P and

when given  0.1664 0.1516 0.1384
TL , the FPK solution calculated    0.03 0.05 0.40

TB
P  P .

-0.4-0.20
0.2

-0.4
-0.2
0

0.2

-0.6

-0.4

-0.2

0

XY

Z

-0.4-0.200.2

-0.6

-0.4

-0.2

0

Y

Z

-0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4

X

Y

-0.4 -0.2 0 0.2

-0.6

-0.4

-0.2

0

X

Z

40

Acknowledgements

This work was initiated during the last week of the author’s sabbatical from Ohio University at
the University of Puerto Rico (UPR), Mayaguez, during Fall Semester 2014. The author gratefully
acknowledges financial support from Ricky Valentin, UPR ME chair, and the Russ College of
Engineering & Technology at Ohio University.

41

Appendices

Appendix A. Three-Spheres Intersection Algorithm

We now derive the equations and solution for the intersection point of three given spheres. This
solution is required in the forward pose kinematics solution for many cable-suspended robots and other
parallel robots. Let us assume that the three given spheres are (1c ,r1), (2c ,r2), and (3c ,r3). That is,

center vectors  Tzyx 1111 c ,  Tzyx 2222 c ,  Tzyx 3333 c , and radii r1, r2, and r3 are
known (The three sphere center vectors must be expressed in the same frame, {0} in this appendix; the
answer will be in the same coordinate frame). The equations of the three spheres are:

     
     
      2

3
2

3
2

3
2

3

2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

rzzyyxx

rzzyyxx

rzzyyxx







 (A.1)

Equations (A.1) are three coupled nonlinear equations in the three unknowns x, y, and z. The

solution will yield the intersection point  TzyxP . The solution approach is to expand equations

(A.1) and combine them in ways so that we obtain  yfx  and  yfz  ; we then substitute these
functions into one of the original sphere equations and obtain one quadratic equation in y only. This can
be readily solved, yielding two y solutions. Then we again use  yfx  and  yfz  to determine the
remaining unknowns x and z, one for each y solution. Let us now derive this solution.

First, expand equations (A.1) by squaring all left side terms. Then subtract the third from the

first and the third from the second equations, yielding (notice this eliminates the squares of the
unknowns):

1131211 bzayaxa  (A.2)

2232221 bzayaxa  (A.3)

where:
 
 
 1313

1312

1311

2

2

2

zza

yya

xxa





 
 
 2323

2322

2321

2

2

2

zza

yya

xxa





2
3

2
3

2
3

2
2

2
2

2
2

2
3

2
22

2
3

2
3

2
3

2
1

2
1

2
1

2
3

2
11

zyxzyxrrb

zyxzyxrrb





Solve for z in (A.2) and (A.3):

y
a

a
x

a

a

a

b
z

13

12

13

11

13

1  (A.4)

 y
a

a
x

a

a

a

b
z

23

22

23

21

23

2 

 (A.5)

42

Subtract (A.4) from (A.5) to eliminate z and obtain  yfx  :

  54 ayayfx  (A.6)

where:

1

2
4 a

a
a 

1

3
5 a

a
a 

23

21

13

11
1 a

a

a

a
a 

23

22

13

12
2 a

a

a

a
a 

13

1

23

2
3 a

b

a

b
a 

Substitute (A.6) into (A.5) to eliminate x and obtain  yfz  :

  76 ayayfz  (A.7)

where:

23

22421
6 a

aaa
a




23

5212
7 a

aab
a




Now substitute (A.6) and (A.7) into the first equation in (A.1) to eliminate x and z and obtain a
single quadratic in y only:

02  cbyay (A.8)
where:

   
    2

1
2
1

2
1

2
1177155

1761154

2
6

2
4

22

222

1

rzyxzaaxaac

zaayxaab

aaa






There are two solutions for y:

a

acbb
y

2

42 
 (A.9)

To complete the intersection of three spheres solution, substitute both y values y+ and y- from
(A.9) into (A.6) and (A.7):

54 ayax   (A.10)

76 ayaz   (A.11)

In general there are two solutions, one corresponding to the positive and the second to the

negative in (A.9). Obviously, the + and – solutions cannot be switched:

 Tzyx   Tzyx  (A.12)

43

Example

Let us now present an example to demonstrate the solutions in the intersection of three spheres
algorithm. Given three spheres (c,r):

        0 0 0 , 2 3 0 0 , 5 1 3 1 ,3
T T T (A.13)

The intersection of three spheres algorithm yields the following two valid solutions:

   TTzyx 101    TTzyx 8.06.01  (A.14)

These two solutions may be verified by a 3D sketch. This completes the intersection of three
spheres algorithm. In the next subsections we present several important topics related to this three-
spheres intersection algorithm: imaginary solutions, singularities, and multiple solutions.

Imaginary Solutions

The three spheres intersection algorithm can yield imaginary solutions. This occurs when the

radicand acb 42  in (A.9) is less than zero; this yields imaginary solutions for y , which physically
means not all three spheres intersect. If this occurs in the hardware, there is either a joint angle sensing
error or a modeling error, since the hardware should assemble properly.

A special case occurs when the radicand acb 42  in (A.9) is equal to zero. In this case, both
solutions have degenerated to a single solution, i.e. two spheres meet tangentially in a single point, and
the third sphere also passes through this point.

Singularities

The three spheres intersection algorithm and hence the overall forward pose kinematics solution
is subject to singularities. These are all algorithmic singularities, i.e. there is division by zero in the
mathematics, but no problem exists in the hardware (no loss or gain in degrees of freedom). This
subsection derives and analyzes the algorithmic singularities for the three spheres intersection algorithm
presented above. Different possible three spheres intersection algorithms exist, by combining different
equations starting with (A.1) and eliminating and solving for different variables first. Each has a
different set of algorithmic singularities. We only analyze the algorithm presented above.

Inspecting the algorithm, represented in equations (A.1) – (A.12), we see there are four
singularity conditions, all involving division by zero.

Singularity Conditions

13

23

1

0

0

0

0

a

a

a

a






 (A.15)

44

The first two singularity conditions:

 13 3 12 0a z z   (A.16)

 23 3 22 0a z z   (A.17)

are satisfied when the centers of spheres 1 and 3 or spheres 2 and 3 have the same z coordinate, i.e.

31 zz  or 32 zz  . Therefore, in the nominal case where all four virtual sphere centers have the same z
height, this three-spheres intersection algorithm is always singular. An alternate solution is presented in
Appendix B to overcome this problem.

The third singularity condition,

0
23

21

13

11
1 

a

a

a

a
a (A.18)

Simplifies to:

23

23

13

13

zz

xx

zz

xx






 (A.19)

For this condition to be satisfied, the centers of spheres 1, 2, and 3 must be collinear in the XZ
plane. In general, singularity condition 3 lies along the edge of the useful workspace and thus presents
no problem in hardware implementation if the system is properly designed regarding workspace
limitations.

The fourth singularity condition,

01 2
6

2
4  aaa (A.20)

Is satisfied when:

12
6

2
4 aa (A.21)

It is impossible to satisfy this condition as long as a4 and a6 from (A.6) and (A.7) are real

numbers, as is the case in hardware implementations. Thus, the fourth singularity condition is never a
problem.

Multiple Solutions

In general the three spheres intersection algorithm yields two distinct, correct solutions ( in
(A.9 – A.11)). Generally only one of these is the correct valid solution, determined by the admissible
Delta Robot assembly configurations.

45

Appendix B. Simplified Three-Spheres Intersection Algorithm

We now derive the equations and solution for the intersection point of three given spheres,
assuming all three spheres have identical vertical center heights. Assume that the three given spheres

are (1c ,r1), (2c ,r2), and (3c ,r3). That is, center vectors  1 1 1 1
T

x y zc ,  2 2 2 2
T

x y zc ,

 3 3 3 3
T

x y zc , and radii r1, r2, and r3 are known. The three sphere center vectors must be expressed

in the same frame, {B} here, and the answer will be in the same coordinate frame. The equations of the
three spheres to intersect are (choosing the first three spheres):

2 2 2 2
1 1 1() () ()nx x y y z z r      (B.1)

2 2 2 2
2 2 2() () ()nx x y y z z r      (B.2)

2 2 2 2
3 3 3() () ()nx x y y z z r      (B.3)

Since all Z sphere-center heights are the same, we have 1 2 3 nz z z z   . The unknown three-

spheres intersection point is  T
x y zP . Expanding (1-3) yields:

2 2 2 2 2 2 2

1 1 1 1 12 2 2 n nx x x x y y y y z z z z r         (B.4)
2 2 2 2 2 2 2

2 2 2 2 22 2 2 n nx x x x y y y y z z z z r         (B.5)
2 2 2 2 2 2 2

3 3 3 3 32 2 2 n nx x x x y y y y z z z z r         (B.6)

Subtracting (6) from (4) and (6) from (5) yields:

2 2 2 2 2 2

3 1 3 1 1 1 3 3 1 32() 2()x x x y y y x y x y r r         (B.7)
2 2 2 2 2 2

3 2 3 2 2 2 3 3 2 32() 2()x x x y y y x y x y r r         (B.8)

All non-linear terms of the unknowns x, y cancelled out in the subtractions above. Also, all z-
related terms cancelled out in the above subtractions since all sphere-center z heights are identical.
Equations (7-8) are two linear equations in the two unknowns x, y, of the following form.

a b x c

d e y f

     
    

     
 (B.9)

where:

3 1

3 1

2 2 2 2 2 2
1 3 1 1 3 3

3 2

3 2

2 2 2 2 2 2
2 3 2 2 3 3

2()

2()

2()

2()

a x x

b y y

c r r x y x y

d x x

e y y

f r r x y x y

 

 

     

 

 

     

The unique solution for two of the unknowns x, y is:

46

ce bf
x

ae bd

af cd
y

ae bd











 (B.10)

Returning to (1) to solve for the remaining unknown z:

2 0Az Bz C   (B.11)

where:

2 2 2 2
1 1 1

1

2

() ()

n

n

A

B z

C z r x x y y


 

     

Knowing the unique values x, y, the two possible solutions for the unknown z are found from the

quadratic formula:

2

,
4

2p m
B B C

z
  

 (B.12)

For the Delta Robot, ALWAYS choose the z height solution that is below the base triangle, i.e.

negative z, since that is the only physically-admissible solution.

This simplified three-spheres intersection algorithm solution for x, y, z fails in two cases:

i) When the determinant of the coefficient matrix in the x, y, linear solution (B.10) is zero.

3 1 3 2 3 1 3 22()2() 2()2() 0ae bd x x y y y y x x        (B.13)

This is an algorithmic singularity whose condition can be simplified as follows. (B.13) becomes:

3 1 3 2 3 1 3 2()() ()()x x y y y y x x     (B.14)

If (B.14) is satisfied there will be an algorithmic singularity. Note that the algorithmic
singularity condition (B.14) is only a function of constant terms. Therefore, this singularity can be
avoided by design, i.e. proper placement of the robot base locations in the XY plane. For a symmetric
Delta Robot, this particular algorithmic singularity is avoided by design.

ii) When the radicand in (B.12) is negative, the solution for z will be imaginary. The condition
2 4 0B C  yields:

2 2 2

1 1 1() ()x x y y r    (B.15)

When this inequality is satisfied, the solution for z will be imaginary, which means that the robot
will not assemble for that configuration. Note that (B.15) is an inequality for a circle. This singularity
will NEVER occur if valid inputs are given for the FPK problem, i.e. the Delta Robot assembles.

